Direct Reprogramming of Spiral Ganglion Non-neuronal Cells into Neurons: Toward Ameliorating Sensorineural Hearing Loss by Gene Therapy

نویسندگان

  • Teppei Noda
  • Steven J. Meas
  • Jumpei Nogami
  • Yutaka Amemiya
  • Ryutaro Uchi
  • Yasuyuki Ohkawa
  • Koji Nishimura
  • Alain Dabdoub
چکیده

Primary auditory neurons (PANs) play a critical role in hearing by transmitting sound information from the inner ear to the brain. Their progressive degeneration is associated with excessive noise, disease and aging. The loss of PANs leads to permanent hearing impairment since they are incapable of regenerating. Spiral ganglion non-neuronal cells (SGNNCs), comprised mainly of glia, are resident within the modiolus and continue to survive after PAN loss. These attributes make SGNNCs an excellent target for replacing damaged PANs through cellular reprogramming. We used the neurogenic pioneer transcription factor Ascl1 and the auditory neuron differentiation factor NeuroD1 to reprogram SGNNCs into induced neurons (iNs). The overexpression of both Ascl1 and NeuroD1 in vitro generated iNs at high efficiency. Transcriptome analyses revealed that iNs displayed a transcriptome profile resembling that of endogenous PANs, including expression of several key markers of neuronal identity: Tubb3, Map2, Prph, Snap25, and Prox1. Pathway analyses indicated that essential pathways in neuronal growth and maturation were activated in cells upon neuronal induction. Furthermore, iNs extended projections toward cochlear hair cells and cochlear nucleus neurons when cultured with each respective tissue. Taken together, our study demonstrates that PAN-like neurons can be generated from endogenous SGNNCs. This work suggests that gene therapy can be a viable strategy to treat sensorineural hearing loss caused by degeneration of PANs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Therapeutic potential of cell therapy in the repair of hair cells and spiral ganglion neurons: review article

The mammalian cochlea is a highly complex structure which contains several cells, including sensory receptor or hair cells. The main function of the cochlear hair cells is to convert the mechanical vibrations of the sound into electrical signals, then these signals travel to the brain along the auditory nerve. Auditory hair cells in some amphibians, reptiles, fish, and birds can regenerate or r...

متن کامل

Reprogramming Glia Into Neurons in the Peripheral Auditory System as a Solution for Sensorineural Hearing Loss: Lessons From the Central Nervous System

Disabling hearing loss affects over 5% of the world's population and impacts the lives of individuals from all age groups. Within the next three decades, the worldwide incidence of hearing impairment is expected to double. Since a leading cause of hearing loss is the degeneration of primary auditory neurons (PANs), the sensory neurons of the auditory system that receive input from mechanosensor...

متن کامل

Perspectives for the treatment of sensorineural hearing loss by cellular regeneration of the inner ear.

Sensorineural hearing loss is a caused by the loss of the cochlear hair cells with the consequent deafferentation of spiral ganglion neurons. Humans do not show endogenous cellular regeneration in the inner ear and there is no exogenous therapy that allows the replacement of the damaged hair cells. Currently, treatment is based on the use of hearing aids and cochlear implants that present diffe...

متن کامل

Inner hair cells are not required for survival of spiral ganglion neurons in the adult cochlea.

Studies of sensorineural hearing loss have long suggested that survival of spiral ganglion neurons (SGNs) depends on trophic support provided by their peripheral targets, the inner hair cells (IHCs): following ototoxic drugs or acoustic overexposure, IHC death is rapid whereas SGN degeneration is always delayed. However, recent noise-trauma studies show that SGNs can die even when hair cells su...

متن کامل

Survival and stimulation of neurite outgrowth in a serum-free culture of spiral ganglion neurons from adult mice.

We have developed a reliable protocol for the serum-free dissociation and culture of spiral ganglion neurons from adult mice, an important animal model for patients with post-lingual hearing loss. Pilot experiments indicated that the viability of spiral ganglion cells in vitro depended critically on the use of Hibernate medium with B27 supplement. With an optimized protocol, we obtained 2 x 10(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2018